Internalization of a Sport Team Through Sport Video Gaming: An Empirical Study

Min Soo Kim, American University in the Emirates
Jeffrey James (Advisor), The Florida State University

As the sport marketplace has become very competitive, traditional sport organizations, teams, and marketers are challenged to attract and maintain sport consumers. Reaching a young consumer base such as Generation Y, the consumers of the future, is critical for sport organizations and marketers because of the large size of the group. Using sport video games as a marketing communication strategy may be a good way to reach Generation Y sport consumers due to the popularity of sport video games. Kim and Ross (2006) found that most sport video gamers were likely to select their favorite teams in real life when playing sport video games (SVGs). Based on this finding, it is believed that playing sport video games may foster a psychological connection with a sports team. A critical step for sport marketers is examining what drives sport video gamers to facilitate personal connections with their favorite teams; said another way, it is necessary to examine the extent to which motives and features of SVGs contribute to a sport identity. The current study examines the extent to which motives of sport video gamers and a sense of presence contribute to explain a psychological connection with a sports team (i.e., internalization) based on Funk and James’ (2004) Fan Attitude Network (FAN) model and the mental model approach (Roskos-Ewoldsen, Roskos-Ewoldsen, & Carpentier, 2002). The purposes of the study are to examine the relationship between motives to play sport video games and a sport identity, to examine the relationship between a sense of presence and a sport identity, and to examine the extent to which motives and a sense of presence interact to affect a sport identity.

Motives were measured using Kim and Hwang’s (2006) 7-point Likert scale with eight subdimensions. In order to measure a sense of presence, Lee, Jin, Park, and Kang’s (2005) scale was adopted and modified with three subdimensions. Sport identity was measured using James and Ross’ (2002) work with two subdimensions. Data (N=367) were collected using an online survey from sport video gamers who visit sport video game related websites including EA sports websites and sport video gamer’s clubs and communities in yahoo.com, msn.com, facebook.com. Data were analyzed using SPSS 15.0 and Mplus 5.0. Descriptive statistics, internal consistency, structural equation modeling (SEM), and multiple-sample structural equation modeling (MSEM) were employed to examine these relationships.

A majority of respondents were Caucasian (56.4%), the mean age was 26.18 (SD=7.33), and average hours per week playing sport video games were 5.49 (SD=5.51). Since the proposed model was a second-order model, six series of confirmatory factor analyses (CFAs) were performed and then a structural equation modeling was conducted. The results of a series of CFAs indicated that each first-order measurement model fit the data well (χ^2(204) = 229.59, p=.11, χ^2/df=1.13, CFI = .99, TLI = .99, RMSEA = .02, and SRMR=.04 for motives, χ^2(24) = 24.06, p=.24, χ^2/df=1.00, CFI=.99, TLI=.99, RMSEA=.01, and SRMR=.02 for a sense of presence, and χ^2(8) = 12.32, p=.14, χ^2/df = 1.54, CFI = .99, TLI = .99, RMSEA = .04, and SRMR = .01 for a sport identity). Based on the results of the CFAs for the first-order measurement models of motives, a sense of presence, and a sport identity, a second-order models were examined to validate the structure of each construct. The results showed that model fits to the data for motives (χ^2(224) = 364.43, p<.01, χ^2/df = 1.63, CFI = .96, TLI = .95, RMSEA = .04, and SRMR = .07) and a sport identity (χ^2(7) = 14.41, p<.05, χ^2/df = 2.21, CFI = .99, TLI =.98, RMSEA = .07, and SRMR = .02) were mediocre but the model fit of a sense of presence to the data was very good (χ^2(24) = 24.06, p=.24, χ^2/df = 1.00, CFI = .99, TLI = .99, RMSEA = .01, and SRMR = .02). Based on the results of CFA for the second-order measurement models, the adequacy of the hypothesized model as a whole was examined. The hypothesized second-order hierarchical factor model fit the data very well (χ^2(666) = 1121.79, p<.01, χ^2/df = 1.68, CFI = .96, TLI = .95, RMSEA = .04, and SRMR = .06). The results of CFAs provide evidence of the reliability and validity of the measures of motives, a sense of presence, and a sport identity.

The hypothesized structural model was used to examine the relationships among motives, a sense of presence, and a sport identity. The results showed that motives and a sense of presence influence a sport identity but the interaction effect between motives and a sense of presence on a sport identity was not significant. To determine whether a sport identity pertains to a sport object or it is related to winning, two grouping variables including winning needs and the frequency of selecting one’s favorite team when playing a SVG, multiple-sample structural equation modeling
(MSEM) was conducted. The results showed that a sport identity pertains to a sport team rather than winning needs. The result of another MSEM using usage levels found the difference between light and moderate gamers in the causal relationship between a sense of presence and a sport identity. Moderate gamers were more likely to feel a sense of presence which may influence a sport identity than light gamers. A gamer’s skill level may influence a sense of presence. Since high skill gamers can focus on the actions in the virtual environment, they are more likely to feel a sense of presence. Since low skill gamers may struggle keeping up with the game pace and controlling virtual environments, they are less likely to feel a sense of presence. The findings contribute to the understanding of what drives sport video gamers to facilitate personal connections with their favorite teams and guide implications for marketers.