Organizational culture reflects basic principles that are highly respected by members in an organization (Schein, 1992). Among scholars of organizational culture in management and sport management, leadership has been considered as an important aspect shaping the characteristics of an organization’s culture. A few studies on leadership (O’Reilly & Chatman, 1996; Tsui et al., 2006; Xenikou & Simosi, 2006) emphasized the role of leadership in forming a more desirable and productive culture, which could be described as a constructive organizational culture (COC). Specifically, Aarons and Sawitzky (2006) defined, “Constructive cultures are characterized by organizational norms of achievement and motivation, individualism and self-actualization, and being humanistic and supportive. Constructive cultures encourage interactions with people and approach to tasks that will enable staff to meet their higher-order satisfaction needs” (p. 292). Consequently, building a desirable COC in a sport service organization could be a significant factor for both job satisfaction of employees and success of the organization.

Despite the imperative need of examining the impact of COC, minimal research has been done in sport management examining the 1) the role of managerial work values (MWV) the process of shaping COC among members in sport service organizations and 2) how COC transfers the effect of leadership to the organizational outcomes (i.e., the possible mediating role of a COC). Therefore, the main purpose of this research is 1) to explain the roles of MWV and COC in sport service organizations and 2) to examine the inter-relationship among MWV, COC, and sport service organization employees’ job satisfaction.

Due to the exploratory nature of this research, a pilot study was conducted prior to collecting the main data. The pilot study survey questionnaire included (a) Taris and Feij’s (2001) Work Value Inventory (WVI): 15 items, (b) Cooke & Lafferty’s (1989) Organizational Culture Inventory (OCI) measuring COC: 40 items, and (c) the Michigan Organizational Assessment Questionnaire’s (Cammann et al., 1983) job satisfaction measure: 3 items. A sample size (N = 142) collected from the target population was used. To examine the quality of the initial questionnaire, the author checked coefficient alpha, item-to-total correlation, and item-to-item correlation (Churchill, 1979) using the Statistical Package for the Social Science (SPSS 17.0). The coefficients of item-to-total correlation of all items were over 0.50 (Hair et al., 1998) except six items. Thus, those six items’ values of item-to-item correlation needed to be examined. Those six items’ intercorrelation values were also unstable and not exceeding 0.30 suggested by Hair et al. (1998). Based on these results, these six items were omitted from the analysis.

The author also conducted a confirmatory factor analysis (CFA) to examine sub-constructs of two main constructs, MWV and COC, after deleting the six items. The author used Joreskog and Sorbom’s Linear Structural Relations (LISREL) 8.72 to conduct CFA. First, all loadings of the measurement model of MWV were significant and loaded highly. The model was a reasonably good fit to the data ($\chi^2 [6] = 11.898, p > .05; \text{CFI} = .995; \text{NFI} = .990; \text{NNFI} = .987; \text{RMSEA} = .0776; \text{SRMR} = .0156$). The value (1.983) of Chi-square/df ratio was good (Kline, 1998). MWV has three sub-constructs (i.e., dimensions) and MWV is considered as a second-order latent variable. Thus, the author needed to conduct a second-order CFA for MWV. The results also showed the model made an acceptable fit to the sample data ($\chi^2 [6] = 11.898, p > .05; \text{CFI} = .995; \text{NFI} = .990; \text{NNFI} = .987; \text{RMSEA} = .0776; \text{SRMR} = .0156$).

Second, all loadings of the measurement model of COC were significant and loaded highly. The model was a fairly good fit to the data ($\chi^2 [48] = 101.623, p < .05; \text{CFI} = .987; \text{NFI} = .976; \text{NNFI} = .982; \text{RMSEA} = .0976; \text{SRMR} = .0374$). The value (2.117) of Chi-square/df ratio was good. COC has four dimensions and COC is considered as a second-order latent variable. Thus, The author had to conduct a second-order CFA for COC. The results showed the second-order model has a proper fit to the sample data ($\chi^2 [50] = 142.688, p < .05; \text{CFI} = .978; \text{NFI} = .966; \text{NNFI} = .971; \text{RMSEA} = .110; \text{SRMR} = .0584$). All model fit indices, except RMSEA, of the hypothesized model were satisfied with their recommended thresholds.
Based on all of the CFA results, the author confirmed the psychometric properties of MWV and COC were presented an adequate fit for the pilot data collected. Therefore, the author could proceed to the main study data collection without two main constructs’ structural issues.