Athlete Celebrity’s Image Management in Non-Sport Product Endorsements

Jakeun Koo, University of Massachusetts, Amherst

Communication
Thursday, June 2, 2016
Abstract 2016-044
1:15 PM
20-minute oral presentation (including questions)
(Forum East 2)

A unique attribute that athlete celebrities possess beyond other celebrities is “sport-relevance.” Athlete celebrities, of course, endorse sport-related brands more frequently than non-sport brands. On the other hand, using their popularity or physical attractiveness beyond sport-related product categories, many sport stars endorse brands which do not belong to the sport product category. Even among non-sport product categories, however, high and low fit with an athlete endorser exists (Koo & Lee, 2015). Since endorser-product fit plays an important role in an advertisement (Till & Busler, 2000), it should be carefully considered when advertisers select an athlete celebrity endorser. Moreover, celebrities’ image accumulated by their endorsement portfolios may influence their image as endorser. The present study aims to investigate how consumers’ attitudes toward the athlete celebrity are affected by endorser-product fit and brand attitudes when an athlete celebrity endorses a non-sport product.

Theoretical Backgrounds

Since Kahle and Homer (1985) first proposed the match-up hypothesis, it has been investigated many times by subsequent researchers. Attitude toward the brand is one of the most frequently measured outcomes. For example, Misra and Beatty (1990) and Till and Busler (2000) showed endorser-product congruence had a positive impact on brand attitudes. Koernig and Boyd (2009) additionally found the athlete endorser-product congruence positively affected brand attitudes. Thus,

H1: Athlete endorser-product fit positively influences brand attitudes.

According to McCracken’s (1989) meaning transfer theory, favorable attitude toward the celebrity endorser may transfer into favorable attitude toward the endorsed product. Silvera and Austed (2004) empirically supported this idea, identifying positive attitude toward the endorser significantly influenced positive attitudes toward the advertised product. Thus,

H2: Pre-attitude toward the athlete celebrity positively affects brand attitudes.

According to the attribution theory, people tend to find reasons why a certain situation has occurred based on commonsense explanations (Heider, 1958). In addition, more attributional process is generated when people view incongruent behaviors than when they view congruent actions (Hastie, 1984). Accordingly, incongruence between a celebrity and an endorsed product elicits an attributional process including cognitive evaluation and elaboration. This elaboration process generates resistance to a positive message (Petty & Cacioppo, 1981). Thus, Celebrity endorser’s image may be damaged when incongruence between an endorser and a product occurs. Till (2001) empirically found that an athlete’s endorsement of an unhealthy product had a more negative impact on endorser image compared to a non-athlete’s endorsement. Thus,

H3: Athlete endorser-product fit positively influences post-attitude toward the athlete celebrity.

Prior research has suggested that attitudes are relatively stable psychological constructs (Fishbein & Ajzen, 1975). Because of this stability, pre-existing attitudes toward the celebrity endorser will be related highly to post-exposure attitudes toward that same celebrity. Thus,

H4: Pre-attitude toward the athlete celebrity positively affects post-attitude toward the athlete celebrity.

In common with the image transfer from celebrities to products or brands in endorsements, the images of the endorsed products or brands transfer to the celebrity endorsers, thereby forming the meanings contained in their personas (Parulekar & Raheja 2006). Similarly, Seno and Lukas (2007) suggested that as much as celebrities can transfer meaning to a brand the reverse is also possible, and called this effect “reverse effects of brand image.” Thus,

H5: Brand attitudes positively influences post-attitude toward the athlete celebrity.
Method

Through the MTurk, 225 (male 58%) respondents in the United States participated in an online survey. The participants’ average age was 34.7 and 59% of the participants were Caucasian. Respondents randomly received one of the two versions of the instrument. They were asked to write the name of an athlete celebrity toward which they had positive (or not positive) attitudes. The two conditions (i.e., “positive” and “not positive”) were designed to create variance in responses (Thomson, 2006). Attitude toward the athlete was asked before stimuli were given to measure the participants’ pre-attitudes toward the athlete. To avoid any bias caused by a certain brand, a fictitious brand, TOV was created and one of the ten product categories which were most frequently endorsed by athlete celebrities was randomly given to respondents. Respondents were then informed that the athlete celebrity they had written down in the first question endorsed TOV. Thereafter, brand attitudes and endorser-product fit were asked. Lastly, attitude toward the athlete celebrity were asked again to measure the respondents’ post-attitudes toward the athlete.

Seven point semantic differential scales were used to measure attitude toward the athlete with four items (Silvera & Austad, 2004), endorser-product fit with five items (Till & Busler, 2000), and brand attitudes with three items (MacKenzie & Lutz, 1989). The partial least squares structural equation modeling (PLS-SEM) was utilized to test the measurement and structural model using SmartPLS 3 (Ringle et al., 2015). PLS-SEM was considered an appropriate technique for the current study relative to covariance-based SEM (CB-SEM), since the objective of the present study is to further develop a theory of celebrity image management on the basis of the formulation of the hypotheses. PLS-SEM is applicable in research areas where a theory is not as well developed as that demanded by CB-SEM (Fornell & Bookstein, 1982).

Results

Bootstrap t-statistics with 5,000 resamples were used as recommended by Hair et al. (2014). All factor loadings were significant and all AVE values were greater than .50. All composite reliability values were higher than .70 (Bagozzi & Yi, 1988). Thus, convergent validity of the measurement model was supported. No squared correlation between two variables was greater than the AVE value of either variable (Fornell & Larcker, 1981). Each indicator loaded highest on the construct it was intended to measure (Chin, 1998). In addition, all heterotrait-monotrait (HTMT) ratio of correlations are lower than .90 (Henseler et al., 2015). Therefore, discriminant validity was also supported.

The paths from endorser-product fit to brand attitudes (H1) was significant (β = .54, p < .001), and from pre-attitude toward the athlete to brand attitudes (H2) was significant (β = .38, p < .001), explaining 75% of the variance. The direct paths from endorser-product fit to post-attitude toward the athlete (H3) was significant (β = .13, p < .05), from pre-attitude toward the athlete to post-attitude toward the athlete (H4) was significant (β = .51, p < .001), and from brand attitudes to post-attitude toward the athlete (H5) was significant (β = .29, p < .001), explaining 76% of the variance.

The model fit criteria, which have been employed in CB-SEM associated with distinction between variance and covariance, are not applicable in PLS-ESM since it assumes distribution-free variance (Hair et al., 2012). In addition, the objective of PLS-SEM is to maximize the explained variance of the endogenous latent constructs, not to achieve goodness-of-fit in CB-SEM (Hair et al., 2014). For these reasons, an overall goodness-of-fit index cannot be reported in PLS-SEM. Instead, the structural model’s quality in PLS-SEM is assessed by variance-based and non-parametric evaluation criteria such as the coefficient of determination (R2) for each endogenous variable (Hair et al., 2014), path coefficient estimates by using bootstrapping (Henseler et al., 2009), predictive relevance (Q2) (Chin, 1998), and effect size (f2) (Cohen, 1988). The presented path model shows large R2 values. All paths in the structural model are statistically significant. All endogenous variables’ Q2 values are larger than zero, thereby identifying predictive relevance of the current model (Chin, 1998). In addition, all f2 values show considerable effect size by falling into the range from .02 to .50 suggested by Cohen (1988). These results show the current structural model has a good quality.

Discussion

Traditionally, a celebrity endorser has been used to affect consumers’ attitudes toward the endorsed product or purchase intentions. However, the current study focuses on how to enhance attitude toward the celebrity. The present study found endorser-product fit and brand attitudes positively affect attitude toward the athlete celebrity
when he or she endorsed a product. These results are important for sports agencies in an aspect of the athlete celebrity’s human brand management. For advertisers, the results are also important since the athlete celebrity’s image accumulated by his or her previous endorsement portfolio may influence their brand. Detailed implications of the findings, limitations, and directions for future research will be discussed in the presentation.