The Power of the Retweet: Athlete Twitter Endorsement Activity

B. Colin Cork, University of Arkansas
Terry Eddy (Advisor), University of Arkansas

Abstract 2016-116
Friday, June 3, 2016
8:50 AM
Poster
(Legacy North)

Since the launch of Twitter in 2006, the social media platform has grown to approximately 316 million active monthly users generating nearly 500 million tweets per day (Twitter, 2015). As a platform, Twitter necessitates brevity of content (140 characters) and concise meaning. This brevity, combined with a simple interface, has helped develop the platform into a natural avenue for fans and athletes to interact (Clavio & Kian, 2010; Filo, Lock, & Karg, 2015; Hambrick & Mahoney, 2011). Due to increased simplicity of interaction between fans and athletes, corporate sponsors are focusing more attention on this form of media for endorsement campaigns (Cianfrone & Zhang, 2015; Filo, Lock, & Karg, 2015; Hambrick & Mahoney, 2011).

Literature Review

The advent and acceptance of social media throughout society has given fans of organizations, teams, and athletes an unrestricted connection to the daily lives, behind the scenes information, and other current news about teams and athletes (Frederick, Lim, Clavio, & Walsh, 2012; Kassing & Sanderson, 2010). This increased access has led to research that covers topics which concentrates on fan-athlete interactions (Kassing & Sanderson, 2010; Pegararo, 2010), and classifying athletes' general social media activity including endorsement activity (Hambrick & Mahoney, 2011; Hull, 2014). Previous studies involving athlete Twitter usage found a preference for social interaction and sharing of personal information (Frederick et al., 2014; Pegoraro, 2010). However, as social media (i.e. Twitter) evolved corporate entities began to explore possible avenues for sponsorship through athlete produced content and Twitter.

Through content analysis and scale development, previous research examined athlete endorsement activity and consumer response (Cunningham & Bright, 2014; Hambrick & Mahoney, 2011). Using content analysis, athlete Twitter feeds have been reported to contain between 10% and 15% of endorsement content (Hambrick & Mahoney, 2011; Hull, 2014). Additionally, research using survey instruments indicates that consumers prefer actively-engaged athletes as endorsers, and that source characteristics (of the athlete) have more credibility with consumers (Cunningham & Bright, 2012).

Despite these two differing approaches there has been a dearth of research examining the role that endorsement match-up congruence plays in the diffusion of information on social media. The match-up hypotheses suggests that the effectiveness of an endorsement is a function of congruence between the endorser and the brand (Choi & Rifon, 2012; Till & Shrimp, 1998). Previous work in this area includes use of the match-up hypothesis in order to determine athlete-sponsor congruence (Yeun, & June, 2007). Generally, the endorsement tends to be more successful when perceived congruence between the brand and athlete is high (Choi & Rifon, 2012; Kim & Na, 2007).

The purpose of this study is to better understand whether endorsement tweet congruence affects dispersion of information (through retweets). There is an opportunity to understand which type of endorsement message will be retweeted more often and allow for greater content diffusion. Because the retweet function is considered the “key mechanism for information diffusion” (Suh, Hong, Pirolli, & Chi, 2010, p. 2) it should be considered an important factor when designing a social media campaign. As such, this study will be guided by the following research questions.

RQ1: What is the proportion of athlete tweets dedicated to endorsement activity?

RQ2: Does retweet frequency of male athletes' endorsement tweets differ from retweet frequency of female athletes' endorsement tweets?

RQ3: Is there a difference in retweet frequency between endorsement tweets exhibiting high congruency and endorsement tweets exhibiting low congruency?

Method and Contribution
A purposive sample of 8 male and 8 female athletes, which are regarded as the top endorsement earners, have been chosen for this study. Top earning male and female athletes were identified from the Forbes Top 100 earning athletes. Due to earning discrepancies, a complementary Forbes list for top female athlete earners will be used. Previous studies have used Forbes Top 100 earning athletes as a criterion for sample selection (Chang et al., 2014). The meta-analysis tool Discovertext was used to mine each athletes' twitter feed and coding tools within the program will be utilized. A total of 2,515 tweets were collected from 16 athletes, with a fairly wide range of 101 to 237 tweets per person appearing over the data collection period.

The coding framework for classifying tweets was adapted from Hull (2014). This framework is rooted in Para-social Interaction theory (PSI), which consists of six categories, namely engager, promoter, informer, sport observer, fan, or behind-the-scenes reporter (Hull, 2014). Endorsement content will be further categorized based on high or low sponsorship congruence using a three-item seven-point Likert scale developed, by Rifon, Choi, Trimble, and Li (2004), utilizing a convenience sample of college students (Lee & Koo, 2015). A 2x2 ANOVA will be constructed to examine interaction effects between male and female factors based on number of retweets obtained by high and low congruent endorsement content.

The study will contribute to the literature in two ways. The first will be the contribution of an updated framework to classify tweets across a broad spectrum of athlete Twitter feeds. Second, understanding which type of message will lead to greater diffusion (i.e. retweets) will allow managers, brands, and athletes to better understand how to reach their desired audiences.