Stadia-anchored development can be interpreted as an effort to satisfy the public need for top-tier professional sports and cultural amenities, while attempting to spur economic development and reverse the detrimental effects of urban sprawl on the city center (Cantor, 2014). The intangible benefits associated with stadia development include: community pride, improved quality of life, increased psychic income, strengthened collective identity, and enhanced collective conscience (Crompton, 2004; Delany & Eckstein, 2002, 2008; Dwyer, Mellor, Mistilis, & Mules, 2000). Previous research has focused on justifying the costs by monetizing the value of these benefits through investigating resident perceptions and presenting hypothetical situations. Results from these investigations are anecdotal because of the inherent methodological issues (Carlino & Coulson, 2004 & 2006; Johnson, Groothuis, & Whitehead, 2001; Owen, 2006; Rosentraub & Brennan, 2011; Walker & Mondello, 2007).

A between-subjects ANOVA analysis, revealed that total area Social Capital Scores were significantly different for each stadia status, Welch’s F(3, 13.689) = 5.357, p = .012, η² = .253, ω² = .193. Next, a Games-Howell post hoc test revealed that there was an increase in area-level Total Social Capital Scores from No Team (M = 181.2, SD = 57.5) to No New Stadium (M = 251, SD = 131.7), a mean increase of 69.8, 95% CI [-265.3, 125.7], which was not statistically significant (p = .622). There was an increase in area-level Total Social Capital Scores from No Team (M = 181.2, SD = 57.5) to Non Successful Stadium (M = 254,94, SD = 68,96), a mean increase of 73.72, 95% CI [11.70, 135.74], which was statistically significant (p = .015). There was an increase in area-level Total Social Capital Scores from No Team (M = 181.2, SD = 57.5) to Successful Stadium (M = 304.2, SD = 87.7), a mean increase of 123.02, 95% CI [8.27, 237.76], which was statistically significant (p = .036). There were no statistically significant differences between the mean Total Social Capital Scores for all cities with a team. Therefore, the social capital benefit may be tied to the existence of a team, as opposed to a new facility.
A second between-subjects ANOVA analysis was run to examine the impact of a stadium on the change in social capital scores, pre and post development. Results revealed that cities with No Team witnessed a decrease in Social Capital Scores (n=15, M = -2.80, SD = 24.53), cities with a team but No New Stadium witness the largest increase in Social Capital Scores (n = 6, M = 20.84, SD = 24.56), cities that underwent a Non-Successful Stadium Project witnessed a decrease in Social Capital Scores (n = 16, M = -19.70, SD = 32.72), and cities that underwent a Successful Stadium Project witnessed a modest increase in Social Capital Scores (n = 7, M = 4.02, SD = 21.71). There was homogeneity of variances, as assessed by Levene's test for equality of variances (p = .637). Change in Social Capital Scores pre and post development were statistically significantly different for the different stadia status in each city, F(3,40) = 3.561, p = .022, $\eta^2=.211$, $\omega^2=.155$. A Tukey-Kramer post hoc test revealed that cities which have a team but No New Stadium (n = 6, M = 20.84, SD = 24.56) witnessed larger positive changes in levels of Social Capital when compared to cities with a Non Successful Stadium Project (n = 16, M = -19.70, SD = 32.72), a mean increase of 40.54, 95% CI [5.21, 75.87], which was statistically significant p = .019. There were no other statistically significant comparisons. This result may reflect the historical value of these older facilities; it could also reflect poor planning of the new stadium development initiative.

A binominal logistical regression was run to determine if Total Social Capital Scores, Total Change in Social Capital Scores, and baseline (1990) Social Capital Scores could be used to predict whether a stadium project took place or not. The model was significant, $\chi^2(4) = 14.495$, p = .002, explained 37.4% (Nagelkerke R2) of the variance in city stadium status and correctly classified 79.5% of cases. Sensitivity was 82.6%, specificity was 76.2%, positive predictive value was 34.8% and negative predictive value was 35.2%. All three predictor variables were significant: Total Social Capital Score (p = .007), Total Change in Social Capital Score (p = .022), and Social Capital Score in 1990 (p = .050). An increasing Total Social Capital Score was associated with the presence of a stadium project, however a decrease in Total Change and 1990 Social Capital Score were also associated with the presence of a stadium project. These results may indicate that stadium cities tend to have higher levels of social capital, that stadiums were built in areas with low levels of social capital in 1990, but did not facilitate the most change in social capital levels across all time periods, when compared to cities that did not undertake a stadium project.

Data analysis is still in progress and will use regression techniques to elucidate the city, franchise, stadium, and planning attributes that function as inputs for social capital creation and/or are determinants for stadia success.