The Amplified Effects of Team-Oriented Employee Sport Programs

Moonsup Hyun, Temple University
Jeremy Jordan (Advisor), Temple University

Management - Organizational Behavior (Other)
20-minute oral presentation (including questions)
Abstract 2018-243
Friday, June 8, 2018 3:50 PM
Room: Acadia A

In recent years, companies have invested a considerable amount of resources in employee support programs (Cascio, 2003). According to social exchange theory, employee support programs are a worthwhile investment as the organization receives benefits in return, such as employees’ improved psychological attachment to the organization and increased job satisfaction (Coyle-Shapiro & Neuman, 2004; Grant, Dutton, & Rosso, 2008; Jones, 2010). In particular, organizational support for employees’ physical activities (e.g. subsidy for a gym membership, in-office workout facilities, and recreational sports leagues) has been very popular recently. Drawing on organizational support theory (Eisenberger, Armeli, Rexwinkel, Lynch, & Rhoades, 2001), scholars have shown that individual-oriented health management programs (e.g. weight loss programs, health and lifestyle coaching programs, etc.) have a positive effect on job satisfaction through increased perceived organizational support (Gebhardt & Crump, 1990; Parks & Steelman, 2008). While there are a substantial number of studies about individual-oriented health management programs, there have been few studies about the effects of proactively organizing and supporting employees’ team-oriented sport activities (e.g. recreational sport leagues, participating in a 5km run together, etc.).

To fill this research gap, this study explores if actively organizing and supporting employees’ team-oriented sport activities has a greater effect on employees’ job satisfaction levels than individual-oriented physical activities (e.g. gym membership subsidy, in-office fitness facilities, weight loss programs, etc.). This is because team-oriented sports offer unique benefits that cannot be achieved through individual-oriented sports such as developing and enhancing social interaction and group cohesion (Eime, Young, Harvey, Charity, & Payne, 2013). Such skills and abilities are then applied in the work setting with positive outcomes; teamwork is a critical antecedent of job satisfaction (Hoegl & Gemuenden, 2001).

The purpose of the present study is two-fold. First, drawing on organizational support theory (Eisenberger et al., 2001), this study sought to reconfirm that employee sports programs (ESP) have a positive effect on employees’ perceived organizational support (POS), which in turn improves their job satisfaction (JS). Second, this study explores if encouraging employees to experience team-oriented sport activities achieves greater job satisfaction compared to individual-oriented programs. For the purpose of this study, an ESP was defined as “any type of employee support program from an organization that encourages employees’ physical activity” which was extended from Grant, Dutton, & Rosso’s (2008) definition of employee support programs. Accordingly, the following research questions are developed:

RQ1: Do ESPs affect perceived organizational support, which in turn influences job satisfaction?

RQ2: Does supporting team-oriented ESPs have a stronger effect on job satisfaction than supporting individual-oriented ESPs?

Method
In order to answer these research questions, a series of statistical analyses were conducted on data collected from MTurk (N = 453). Fifty-two percent of the sample was male with an average age of 36.61 years (SD = 9.63) and an average of 7.07 years of work experience. The ESP attitude (ESPA) scale was adopted from Jones’ (2010) study, the POS construct was adopted from Rhoades, Eisenberger, & Armeli’s (2001) study, and the JS scale was adopted from Quinn & Shepard’s (1974) study. After completing data collection, respondents were classified into two groups based on the type of ESP: team-oriented ESP (N = 224) and individual-oriented ESP (N = 229).

Results
An exploratory factor analysis, conducted using maximum likelihood method, extracted three factors with 17 items:
ESPA (4 items), POS (8 items), and JS (5 items). A total of 17 items explained 64.7% of the total variance. Next, a confirmatory factor analysis (CFA) was conducted with a three-factor model. Based on the CFA’s initial result, some items were dropped to obtain a better model fit; one item from ESPA, three from POS, and one from JS. According to Hu and Bentler’s (1999) criteria, the model showed a good fit ($\chi^2 = 120.80$ (51), $\chi^2/df = 2.37$, $p < .01$; RMSEA = .055 (.042, .068), $p > .05$; CFI = .98; SRMR = .035). Finally, for convergent, discriminant validity and construct reliability checks, some indices were explored: (i) all average variance extracted (AVE) scores were above .50, (ii) the square root of each factors’ AVEs were larger than all correlations with other factors, (iii) all AVE scores were larger than the maximum shared variances, and (iv) composite reliabilities were greater than .70.

To answer RQ1, structure equation modeling (SEM) was conducted and a bias-corrected bootstrap confidence interval was generated (Hayes, 2013). The model showed a good fit ($\chi^2 = 120.80$ (51), $\chi^2/df = 2.37$, $p < .01$; RMSEA = .055 (.042, .068), $p > .05$; CFI = .98; SRMR = .035). These model fit indices were identical with those of the measurement model because there were three direct paths in the composite model, resulting in the same χ^2 value and degree of freedom. Results of SEM indicated that ESPA positively affected POS ($\beta = .414$, $p < .01$). In addition, there was a significant indirect effect of ESPA on JS through POS since the estimated indirect effect was .382 and the 95% bias-corrected bootstrap confidence interval did not include zero (.290, .493). To identify the answer to RQ2, a multi-group analysis was conducted. The results showed that the unconstrained model had a significantly better model fit than the constrained model (χ^2 difference = 28.37 (12), $p < .01$). In particular, when constraining the path from POS to JS to equal, the unconstrained model showed a marginally, but significantly better model fit (χ^2 difference = 3.19 (1), $p < .10$), which means that the effect of POS on JS was moderated by the type of ESP. The effect of POS on JS was stronger for the team-oriented ESP group (standardized $\beta = .799$) than individual-oriented ESP group (standardized $\beta = .676$).

Discussion

In response to the first research question, the findings indicated that ESPs significantly increased job satisfaction. In particular, it was reconfirmed that POS was a key mechanism through which ESPs influenced job satisfaction. These results gave a plausible explanation for why a number of companies spend valuable resources supporting employees in non-work related activities (Cascio, 2003). For the second research question, the findings suggested that team-oriented ESPs (e.g. intramural leagues, etc.) more strongly influenced employees’ job satisfaction than individual-oriented ESPs (e.g. on-site workout facilities, etc.). Team-oriented sport activities have a potential to develop group cohesion and improve social interaction among colleagues through experiencing and practicing teamwork on sport teams (Eime et al., 2013). Considering the fact that teamwork is one of the keys to an employee’s personal work satisfaction (Hoegl & Gemuenden, 2001), team-oriented ESPs would increase employees’ job satisfaction through increased teamwork among colleagues by participating in team-oriented sport activities together.