Due to the increased growth of the esports market, esports organizations have devoted resources to the construction of several esports venues such as a $50 million esports arena (Sunnucks, 2019). While investors have been paying attention to the esports market and have thus noted the need for more esports venues, scarce attention is garnered to identify physical and social surroundings of esports venues, which are assumed to engender spectators’ attitudinal dispositions (e.g., Jang, Byon, & Yim, 2019). The current study was designed to develop a preliminary scale entitled esportscape that assesses the unique elements of esports event environments. The present study built on previous studies (Jang, Kim, & Byon, 2019a; Jang, Kim, & Byon, 2019b). Based on extensive review of literature and on-site observations, a total of eight factors with 57 items (social density, suitable behavior, physical appearance, similarity, social-emotional support, spectators’ passion, design, and ambient) were subject to exploratory factor analysis (EFA) procedures, resulting in six factors with 31 items (social density, social-emotional support, suitable behavior, similarity, design, and ambient). A qualitative approach (i.e., open-ended survey questions) was conducted to identify further unique elements associated with esports venues. Nine participants who had attended eSports events were recruited via M-Turk. As a result of content analysis, 11 themes were identified, including the unique elements of esports environments such as cosplay (i.e., wearing an elaborate costume of one’s favorite game character) and cheering culture (e.g., using a pair of long balloons).

Based on the factors identified in the quantitative and qualitative methods, a total of eight factors with 59 initial items (i.e., suitable behavior, physical appearance, similarity, social density, perceived cosplay appearance, perceived cheering behavior, physical environments: sight perception, physical environments: space perception) were subject to EFA using 232 data collected from M-Turk. The respondents were all U.S.-based adults who had previously attended esports events. In the EFA, we applied an alpha factoring extraction method and the promax rotation approach. The results of Kaiser-Meyer-Olkin (.92) and Bartlett’s Test of Sphericity (5421.4; p < .001) indicated that the data were appropriate for factor analysis. The results of the EFA showed cross-loading and low factor loading (< .40), and thus 23 items were removed. We ran another EFA, which resulted in a more refined structure comprised of six factors with 36 items, including the two unique esports environment elements: social density (4 items, α = .87), similarity (3 items, α = .86), perceived customer behavior (5 items, α = .83), and physical appearance (5 items, α = .85). As theorized, sight perception (10 items, α = .88) and space perception (9 items, α = .84) emerged to represent the physical environment.

The findings from this current study contribute to the literature by providing esports practitioners and researchers with additional insight into the identification and measurements of environmental atmospherics associated with esports venues. To further validate the esportscape scale, researchers should examine the six-factor model via confirmatory factor analysis. Upon validation, a structural equation modeling should be used to examine the relative influence of the six factors on esports spectators’ emotional and behavioral responses.